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Abstract .  The present paper presents three numerical methods devised for the solution of hemi- 
variationM inequality problems. The theory of hemivariational inequalities appeared as a develop- 
ment of variational inequalities, namely an extension foregoing the assumption of convexity that is 
essentially connected to the latter. The methods that follow partly constitute extensions of meth- 
ods applied for the numerical solution of variational inequalities. All three of them actually use 
the solution of a central convex subproblem as their kernel. The use of well established techniques 
for the solution of the convex subproblems makes up an effective, reliable and versatile family of 
numerical algorithms for large scale problems. The first one is based on the decomposition of the 
contigent cone of the (super)-potential of the problem into convex components. The second one 
uses an iterative scheme in order to approximate the hemivariational inequality problem with a 
sequence of variational inequality problems. The third one is based on the fact that nonconvexity 
in mechanics is closely related to irreversible effects that affect the Hessian matrix of the respec- 
tive (super)-potential. All three methods are applied to solve the same problem and the obtained 
results are compared. 
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1 I n t r o d u c t i o n  

The  present  paper  in ten ts  to present  three numer ica l  me thods  for the t r e a t m e n t  
of non-convex,  n o n - s m o o t h  min imiza t i on  problems arising in  s t ruc tu ra l  and  con- 
t i n u u m  solid mechanics.  

The  usual  p rob lem in s t ruc tu ra l  analysis  consists in f inding an  equ i l ib r ium point  
in the space of p r imary  variables (displacement  field) unde r  a given value of the 
dual  variable (field of forces) and  b o u n d a r y  condit ions.  

Along the process of impos ing  a field of displacements ,  the mechanical  sys tem 
undergoes  mechanica l  d is tor t ions  (strains) ,  resists by developing local counterac-  
tive forces at an  inf in i tes imal  level (stresses) and  absorbs  the work supplied by the 
loading field : this process can be described by means  of a po ten t ia l  funct ional .  
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Fig. 1. Examples of nonmonotone laws : (a) Slow pull-off test of composite laminate, (b) Real 
and Coulomb friction, (c) Reinforced concrete in tension. 

Finding the equilibrium of a structural system is equivalent to finding the min- 
imum of the potential functional expressing the total work of the system, i.e. that  
absorbed by the structure minus that  supplied by the loading field. 

When the mechanical system remains in the normal operational framework, i.e. 
the loads are not severe enough to cause structural damage and no other complex 
physical mechanisms (material behaviour, unilateral contact etc) contribute to the 
energy balance of our system, the potential functional is quadratic and the respec- 
tive unconstraint quadratic minimization problem constitutes a simple, everyday 
practice problem for the engineering community. 

It is noteworthy that  the geometric form and properties of the epigraph set of 
the potential functional is directly associated to types of mechanical behaviour. 

Foregoing the quadratic form of the epigraph of the potential functional neces- 
sitates the use of Newton-Raphson type non-linear solution strategies. 

An excellent account of the structure of the formulation of the equilibrium prob- 
lem in mechanics suitable for a reader rather mathematically than mechanically 
oriented, can be found in the book by G.Strang [1]. 

However there is often the case that  the classical methods of linear or linearized 
analysis encounter forbidding difficulties both in the formulation and in the numer- 
ical approximation of problems involving nonmonotone, possibly multivalued stress 
- strain or reaction - displacement laws [2, 3, 4, 5, 6, 7, 8, 9, 10]. (cf. Fig.l). 

This can be due to the fact that  either the stress-strain laws in the interior of 
the elastic body or the respective non-linear boundary condition is multivalued, 
i.e. complete vertical branches may be present in the one-dimensional case. Then, 
the respective energy functionals (superpotentials) involved are nonconvex and 
nonsmooth. 

The variational forms for such problems are termed hemivariational inequali- 
ties [5, 6, 8, 9, 11] The respective nonconvex energy functions, are called noncon- 
vex superpotentials in accordance to the case of monotone mechanical behaviour 
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described by convex superpotentials, where variational inequalities are obtained 
[12, 13, 6]. 

The theory of variational (resp. hemivariational) inequalities is closely relat- 
ed to the notion of convex superpotentials (resp. of nonconvex superpotentials) 
introduced into Mechanics by J. J. Moreau [14, 15] (resp. P. D. Panagiotopoulos 
[5, 6, 16]) for monotone (resp. for nonmonotone) possibly multivalued boundary 
conditions and constitutive laws. 

The lack of convexity of the energy functions necessitates that the mathematical 
study regarding the existence of solution for the so-called hemivariational inequal- 
ities be exclusively based on weak compactness arguments [6, 9]; this makes things 
a bit more di~cult than the case of variational inequalities where monotonieity 
and respectively arguments can be applied [12, 6]. 

If some additional, mild, growth assumptions for the nonsmooth superpotentials 
involved are imposed [14, p.167], then, nonsmooth, nonconvex potential or com- 
plementary energy functions can be obtained. The substationarity points hence 
obtained (all the local minima, certain local maxima or saddle points) supply all 
the possible solutions of a hemivariational inequality. 

This is a generalization of the minimum potential or complementary energy 
theorems which hold in the case of variational equalities and inequalities [12, 6]. 
In the absence of the mentioned growth conditions the hemivariational inequality 
may have solutions, i.e. points of equilibrium, that are not substationarity points. 

The determination of the full set of solutions of a substationarity problem, even 
when only smooth functionals are involved, remains an as yet open problem and 
constitutes an area of active research in the field of computational mechanics. 

This indeed holds for a global optimization problem as well, the latter being 
only a particular case of the general substationarity problem [17, 18, 19, 20]. 

In addition, the problems encountered in mechanics usually have a very large 
dimension, of the order several thousands of degrees of freedom. Moreover, all the 
stable and unstable solutions on the loading path are sought as the global min- 
imizer is affected by intermediate stages of the mechanical process (many types 
of mechanical behaviour are history or path dependent due to the irreversibili- 
ty involved). Consequently, the existing nonconvex optimization algorithms can 
provide only a partial remedy for engineering problems. 

Although the progress in the theoretical study of the existence and approx- 
imation questions for hemivariational inequalities is considerable (cf. [9, 16, 21, 
22, 23, 24, 25] and the references given therein), relatively few methods exist for 
the numerical treatment. The following lines of approach have appeared in the 
literature : 

i. Iterative processes with a convex analysis origin : 

- Penalization by means additional terms in the energy functional [26], 

- Bundle - type methods of Nonsmooth Optimization [20], 
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- Regularization techniques resulting in a sequence of variational equalities 
[21]. 

These methods can find only very limited use in practical applications, due to 
the fact that they fail too rapidly with increasing problem size (order of one 
hundred of unknowns), due mainly to stability problems. 

2. Special methods dealing only with special classes of nonconvex problems [16] : 

a) nonlinear solver with step - length control to remain stable around limit 
points [27, 28, 29, 30], 

b) nonconvex problem substitution by appropriate combination of convex 
problems by means of quasidifferentiability [31], 

c) local approximation of the hemivariational inequality by appropriately 
chosen sequence of convex problems [32, 33]. 

All the methods of the second group lead to sequences of subproblems amenable 
by means of existing optimization algorithms. The verified reliability and high con- 
vergence rates of the latter make a precious advantage. An additional advantage 
is that their combination with the methods developed in nonlinear finite element 
analysis, with efficient iterative minimization procedures and specialized precondi- 
tioning schemes may lead to the construction of algorithms that are able to operate 
on large scale systems (order of thousands of unknowns) for any kind of nonmono- 
tonicity. Note that the last three methods are especially efficient in the case of 
nonconvex energy functions resulting from zig - zag (i.e. multivalued) stress-strain 
and reaction displacement laws. 

In the present paper we describe three methods that reduce a hemivariational 
inequality (nonmonotone problem) into a number of variational inequalities (mono- 
tone problems). The first one decomposes the hemivariational inequality into a 
number of variational inequalities by replacing partially the nonconvex superpo- 
tential by convex cones (see for preliminary information Fig. 3). Then the prob- 
lem is formulated as a finite set of variational inequalities or convex optimization 
problems on differing domains of the displacements space. Subsequently each vari- 
ational inequality can be treated effectively by specialized convex minimization 
algorithms (based on Nonsmooth Sequential Quadratic Programming in most cas- 
es [17, 33, 34]). The robustness of this method constitutes its major advantage. 
An additional acceleration of the procedure may be achieved, if some simplifying 
assumptions on the form of the nonmonotone laws involved are made. 

The second method which will be studied here replaces the hemivariation- 
al inequality problem with a sequence of variational inequality problems. This 
is achieved using an iterative procedure which approximates in every step the 
nonmonotone force-displacement diagram corresponding to the nonconvex energy 
function by a monotone diagram. Based on the solution of this monotone problem a 
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new convex energy problem is formulated until convergence is achieved. Each vari- 
ational inequality problem that arises is then treated with a convex minimization 
algorithm. This way we extend the advantages of the robust algorithms employed 
in convex minimization, in the area of nonconvex minimization. 

The third method makes use of the irreversibility of mechanical degradation 
and attempts to formulate a condition for global optimality based on certain rather 
strict assumptions on the part of the potential that is responsible for the lack of 
convexity (dissipation potential). 

2 T h e  m a t h e m a t i c a l  p r o b l e m  

In this section we outline the mathematical formulation of a general hemivariation- 
al inequality that  governs a large class of nonconvex energy problems of Mechan- 
ics. In the following vector quantities will be printed boldface to distinguish from 
scalars. 

We consider a structure which occupies a subset ~ of Kt 3 in its undeformed state 
and let P be the total boundary of the structure which consists of the nonover- 
lapping parts F/ ,  Fu and Ft. On F /  (resp. Fu) the forces (resp. displacements) 
are prescribed and on Fc nonmonotone possibly multivalued laws hold between 
the normal (resp. tangential) tractions SN (resp. ST) and the boundary normal 
(resp. tangential) displacements u g  (resp. UT) which can be expressed through 
the nonconvex superpotential relations : 

- SN E cSjN(uN) , --ST E OjT(UT)  (1) 

Here b denotes the generalized gradient of Clarke [6, 8, 35]. This symbol constitutes 
an extension of the usual differential to nonsmooth and nonconvex functionals 
while j N , j T  are nonconvex, generally nonsmooth energy functions (Fig. 1). We 
assume also that  the behaviour of ~ is governed by an analogous nonconvex energy 
law : 

e (2) 

where o- = {crij},  e = {e i j }  are the stress and strain tensors and w is the noncon- 
vex strain energy density. We recall that  (2) - analogous holds also for (1) is by 
definition equivalent to : w~ e*) _ (~ijcij V e C R 6 where w~ denotes the 
directional derivative of Clarke. Under the assumption of the small deformations 
each equilibrium state of the structure fulfills the expression : 

[SN(vN--UN)dr+ST(v --UT) rl+ (3) 
c 

(1, v - u )  VvEU~d 

This is the expression of the "principle" of virtual work characterizing each equi- 
librium position. There the bilinear form (1, v) expresses the virtual work of the 
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external forces l(x) �9 ~3  and Uad = {u : ui = Ui(x) , x �9 P~} is the kinematically 
admissible displacement set. Using the inequality form of (1,2) we transform (4) 
to the following problem : 

Problem T'v : Find u �9 Uad satisfying 

f w~ e(v - u)] df~ + 

fr  j~ UT(V) -- UT(U)] dr > (4) 
e 

Expression (4) is a hemivariational inequality due to the appearance of the energy 
variation terms fn w~ "" "] df~, frcj~ dF and frcj~ dr  [11, 16]. 

Next we introduce the 'potential energy' functional : 

where : 

the inequality : 

ro j~  ug (v )  -- ON(U)] dr  + 

( 1 , v - u )  V v � 9  

II(u) = W(u)  + J (u )  - (1, u) 

W ( u ) =  L w(e)df~ J ( u ) =  f r  jN(UN) dP + [ jT(UT) dP 
c dFc 

(5) 

(6) 

The following 'substationarity'  [36] problem is now considered : 
Problem 7~ : Find u �9 Uad such that : 

o �9 On(u). (7) 

If II is convex then 0II coincides with the subdifferential OH of convex analysis 
and Pw becomes a convex minimization problem [6]. 

If the functionals w, jY and jT are locally Lipschitz and satisfy a growth 
assumption [9, proposition 4.1] and a regularity assumption (0-regularity) then 
every solution of the substationarity problem 7vw is a solution of the hemivaria- 
tional inequality 7~v and conversely. One can verify that  for the unidimensional 
laws of Fig. 1 both the growth and the 0-regularity assumptions hold. 

We note that  if instead of (1,2) the boundary forces (resp. stress) are expressed 
as generalized gradients of the displacements (resp. strain) then a hemivariational 
inequality similar to (4) will be derived (in terms of stress variations) and we are 
led to a substationarity problem for a complementary energy functional analogous 
to P~. 

3 C o n v e x  d e c o m p o s i t i o n  b a s e d  on  t h e  c o n t i n g e n t  c o n e  

In this section we will discuss a wide subclass of nonsmooth and nonconvex func- 
tionals which are encountered in many engineering applications especially related 
to the laws depicted in Fig.1 : we assume that for w in relation (2) a set of auxil- 
iary nonsmooth convex functionals wi, i E L(w) = {1, 2 , . . . ,  l} exists such that for 
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Fig. 2. Decomposition of ft in sections with common indices. 

every admissible displacement u at all points x E f t  the value of w equals to the 
value of one or more wi's and an 'active function' index set can be defined : 

c~(w(u,x)) = {i �9 n (w) :  wi(u ,x)  = w(u,x)}  (8) 

Since the following discussion can be easily extended to functionals jg,  jT also, for 
the sake of clarity in the following we will assume that  jN, jT in :Pv and :P~ are 
zero. 

For a given displacement field u the indices (~[w(u, x)] create a partitioning of 
ft in m > 1 subsets ft~ with common indices : 

m 

f~=  U~2i f ~ j = { x [ x � 9  j � 9  j = l , . . . , m  (9) 
i=1 

We denote by ~i, i = 1 , . . . ,  m the corresponding open sets and by ~o, P = 1 , . . . ,  # 
the boundaries between the ~i's, i = 1 , . . . , m  (see Fig. 2) : ~i  = fti N fti+l and 
(I)i = f ~ i - ~ i - 1 -  ~i- If we assume that  (I)i is the interior of a partition with 'borders' 
~i  and ~i+1 then ~i A ~j = q[i A i~j = ~ i  n l~j = ~ i r j i , j  = 1,. . .  ,m. 
For all points in Oi i is the only active index while in the common boundary 
q2p between Oi and ~i+1 both i and i + 1 are active. The determination of the 
properties of the sets ~i and ~p is a difficult, still open, mathematical problem for 
the general case of 3D -nonmonotone possibly multivalued relations. Although the 
theory does not exclude the possibility of very complicated partitioning topologies, 
in most numerical applications a 'certain continuity' of mechanical behaviour leads 
to rather simple topological forms for the partitioning of ft. 

Using this decomposition of ft we write the functional W in (6) as : 

17V(u)=~ofwi(e(u) )d f~T~l~Wlce(e(u) )d~.= . = (10) 

where wlc o = wilco or wlc p = Wi+llCo. We assume that  all the integrals in (10) 
make sense. Next we introduce the superpotential I'I that  is derived by replacing 
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W in (5) by 17V. Although the equivalence : 

0 �9 cgl:I(u) r 0 �9 ( g n ( u )  (11) 

is obvious, the generalized gradient cSl:I is easier to compute than cSII. Similarly it is 
easier to compute feasible descent directions for l:I than for H. Thus, in the following 
instead of H we will use the "decomposed" form l~i and will adapt accordingly 
problem Pv by means of an iterative scheme. Let us assume that  after the k-th 
iteration a solution u k is known and we want to determine u k+l. u k is used to 
derive the active index sets (8) that  lead to a decomposition fL k ~k For the k + 1 Z, p" 
iteration we consider the hemivariational inequality : 

Find u k+l �9 (fad satisfying the inequality : 

[ w 0 ( e ( u k + l ) , e ( v  -- uk+l))d~t  _> (1, v -- u k+l) Vv �9 (fad 

' ~  . ~-Aj  

(12) 

Here At, A2 , . . .  must be determined and 

tTak+ 1 (Gad = {" lu  = {ui},u  �9 Uad ul~+l(X) = ul~+~(x) forx  �9 _p , p = 1 , . . .  ,#} 

(13) 
k+l k ok+l k lI/k+l is the common boundary of flj = ~j  + Aj and ~ j + l  ---- ~']j+l -{- A J+ 1" 

k+l Setting in (12) v = u k+l on ~j  j = 1 , . . . , i  - 1,i + 1 , . . . , r a  we obtain, due to 
the convexity of wi, the variational inequality : 

Find u k+l �9 (Gad such as : 

[wi(e(v)) wi(e(uk+l))]d~ti > (1, v - "  ~+1~, Gd - - " J l f l ~+~  V v  E (14) 

k+l and for i = 1, 2 , . . . ,  m. The corresponding minimum problems for the subsets ~ j  
flk+l j+l with common boundary ~pk+l together with the kinematical compatibility 

condition on kO k+l read : P 
Find �9 k+1 ~,k+l Uad such : '~j '--j-F1 6 as 

k+l f IIj(uj ) -- min{ wj (e (v) )dn j - (1 ,v ) l~  Ve(Gad} (15) 

k+l Hj+l(Us+l) 

subject to : 

min { r /  wj+l(e(v))d~j+i - (1, v)In~+l I v E (Gad} (16) 

~+l~-ij+l 

k+l U~+I(x) q/(5+1) (17) uj+ l ( x )  = on _p  
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Now we consider the following problem : 
Find - k+l and - k+l u j  uj+ 1 as a solution of : 

m i n  { I I j ( u j  ) + I I j + l ( U j + l ) -  /~p(Uj+ 1 (x )  - ] u j  , u j +  1 E 

~pk+l 

(18) 
For the solution of (18) we follow according to [16] a modification of the 'nonfeasible 
gradient controller' method of Lasdon and Schoeffler [37], [6, p.356]). Suppose that  
A s has a given value, say Ap,~ for u = 1, 2, and that  ~k+t (or equivalently Aj 

. . . .  S 

or Aj+I) have a given geometry say ~pk,u. The first level problems have he form : 

f k+l . k+l Uod} min {IIj(u~ +1) + AS,L, uj,~, d~  s uj,~, E (19) 

~,~, 

k+ l  f k+l  . k+l  rain {Hj+l(Uj+l,~) - Uad} (20) /~s,uuj+l,udff2 s Uj+l ,  u E 
J 

while the corresponding second level corrections for the Lagrange multipliers and 
the free boundary geometry read : 

k+l  k+l  k ffl k .a-=f- k+l  . k+l"~ )~p,u+l = )~p,u-~-g(Uj+l,u--Uj,u ) = /'5,~ > 0 (21) ~p,u+l ~p,u--e~ Uj+l,u--uj ,u ] 

where n, ~ are appropriately chosen constants [37]. First (19),(20) are solved, then 
As,. (resp. k ~s,u) is corrected through (21), the new value Ap,~+I (resp. the new 
geometry of the interface k ~s,~+l) is passed to (19),(20) and so on until the differ- 

ences uj,u+l - uj, . "  k+l . k+l~l, [As,~+l -- As,ul become appropriately small for every x within 

fL This procedure is continued until [u~ - u~k-1) I becomes appropriately small 

and the sets f~/k i = 1 , . . . ,  m do not vary considerably from step to step. We note 
that  at the points belonging to the borders if2 s the compatibility condition (17) 
must be satisfied. The values of the corresponding Lagrange multipliers provide 
the constraint forces. 

The method outlined here includes two interrelated iterations: the first with 
respect to the decomposition of the energy functions and the second with respect 
to a partitioning of the structure f~ into parts corresponding to common indices. 
To explain this by means of a simple example let us consider Fig. 3.a-c. The energy 
function (3.a) is decomposed into two convex parts wl and w2. The first (resp. the 
second) part introduces the inequality e _< e0 (resp. e > e0). We denote the set of 
points of f~, where the first (resp. the second) inequality if fulfilled by f~l (resp. by 
f~2). The idea of the proposed algorithm is the following : iterations with respect 
to the problems 0 E OWl(U),O E Ow2(u) (0 -- 0 due to the convexity) and also 
with respect to the partitioning of f~ into f21 and f~2 (i.e. by changing the position 
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" A 2  

I A I ~  A2 > "I 
Fig. 3. (a-b) nonsmooth potential with nonmonotone generalized gradient, (c) Convex decompo- 
sition using indicator functions. (d) A nonmonotone - nonsmooth law and its 'complete' decom- 
position using monotone graphs. 

of the boundary  between ~1 and ~2 we t ry  to find a bet ter  local minimum) lead 
to the solution set. 

The decomposition of the nonconvex functionals w, jN, jT in the manner  described 
at the beginning of this section is not uniquely defined because the epigraph of 
any given functional may be divided in convex parts  in many  different ways. The 
number  of the auxiliary convex functionals employed must be minimized in order 
to keep the parti t ioning of ~ as simple as possible. In [33] a decomposition scheme 
has been proposed based on the analysis of the contingent cone of the function- 
als into convex parts.  We note tha t  the contingent cone Kc(w) of a functional 
w provides a measure of its nonsmoothness and nonconvexity [35]. An impor tant  
practical advantage of this approach is that it can easily be automated, a fact that 
greatly facilitates programming. 

In many problems of Mechanics the position of the nonconvexity kinks in the 
displacement space is predefined by affine relations of the form : f(e) = 0 (eg. in 
Fig. 3.b by : e(u) - e0 = 0). We use these hypersurfaces to divide the domain of 
w into sections Ai, i -- I,..., I. Each section is bounded by a set of inequalities of 
the form : f(e) _> 0. Since each Ai is a convex cone, w is also convex within it. A 
family of auxiliary convex functions can now be produced by adding an indicator 
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function to w (Fig. 3 . c )  : 

wi(e) = w(e) + Ii(e) Ii(e) = { 0  f o r e E A i  
c~ for e r Ai i -- 1 , . . . ,  l (22) 

This decomposition is able to provide a single active function index at either 
side of a kink and pairs of active indices along it, as required by (8). Since 
wj(e) >_ wk(e) Ve ~ Ak the auxiliary potentials wi are related to w by : 
w(e) = min t{wl (e ) , . . . ,  wt(e)}. 

The mechanical meaning of the contingent cone decomposition approach and 
the usefulness of the auxiliary functionals wi can be demonstrated easily in terms 
of stress - strain (or displacement - reaction) graphs. Roughly speaking, the contin- 
gent cone decomposition described corresponds to the analysis of the nonmonotone 
stress - strain curves (e.g. of Fig. 1) into monotone parts. 

The decomposition method described here has already been applied as an inde- 
pendent procedure to the study of delamination of laminated composites in [38] 
with satisfactory results. Both algorithms outlined there are special cases of the 
approximation scheme described in this section for the discretized form of the 
problem. 

4 T h e  a p p r o x i m a t i o n  of  t h e  n o n c o n v e x  s u p e r p o t e n t i a l  b y  a s e q u e n c e  
o f  c o n v e x  s u p e r p o t e n t i a l s  

In this section we will describe the second method for the solution of the hemi- 
variational inequality problem :Pv. As it was mentioned in Section 2, the problem 
is nonconvex possibly nonsmooth, due to the appearance of the nondifferentiable 
terms ff~w~ dr2, fro jo [ . . . ]  dF and fro jOT[...] dF. We shall propose a method 
consisting in the approximation of the solution of the hemivariational inequality 
by the solutions of certain appropriately defined variational inequalities. Let us 
consider instead of the nonconvex energy terms w, jN, jT the convex energy terms 
w', J~v, J~-. Then instead of (4) the following variational inequality problem arises: 
Problem P% : Find u E Uad such that 

+ 

f r  [ j~(ur (v) )  - >  (1, v - u) c Uaa. (23) j~r (UT(U))]dPi Vv 
c 

This problem is convex and can be solved using convex minimization algorithms. 
Let us write now problem 7~v in (4) in the form: Find u E Uad such that 

__s [w'(e(v)) - w'(e(u))ldf~ + _..s [j~v(UN(V)) -- fN(UN(u))ldF + 

f r  [j~(uT(v)) -- > (1, v -- u) + n (v ,  u) Vv e Uad (24) j~(uT(u))]dF 
c 
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Fig. 4. Parametric partial decomposition of a nonmomonotone law. 

where 

R(v, . )  = / W(~(v)) - w'(~(u))]~a + f~ ~i,(uN(v)) - j~,(uN(u))ldr + 
r 

Using the previous formulation we propose the following iterative scheme for 
the solution of the hemivariational inequality problem. 

Find u(k) E [Tad such that  

a w'(e(v)) - w'(e(u(k)))]df2 + fro [7~V(UN(V)) --j'y(Uy(U(k)))]dP + 

f r  [j~,(UT(V)) --j~(uT(u(k)))]dFi > (I, v -- u (k)) + R(v, u (k-l)) Vv e U~d. (26) 
c 

This heuristic iterative scheme can be justified by means of Fig. 4. Starting 
the iterations we assume that  instead of the nonmonotone law OAK, the simple 
monotone law OAA' holds. Then the structure has a unique solution as it is well 
known from the solution of the variational inequality of the monotone friction 
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problem with given normal reaction. Let us denote this solution by u(~ ). Obviously 
this is not a solution of the hemivariational inequality problem because the solution 
does not lie on the nonmonotone law (point (1)). In the next step we t ry  to find a 
bet ter  estimation of the solution by solving a new monotone problem but with the 
assumption that  the simple monotone law OBB' holds. This new problem gives as 

a solution u(~ ). Then a new variational inequality problem arises assuming that  the 
( i - - i )  

law OCC' holds and so on until the solution u T coincides with the solution u~ ) 
We must note at this point that  the nonlinear term R of (25) represents from the 
mechanical point of view the difference of the area variations under the two graphs 

- the nonmonotone one and the monotone one - i.e. it measures the differences of 
the reaction forces corresponding to the two laws. 

Based on the above simplified concept, a large class of algorithms can be for- 
mulated in order to treat the particularities of each problem. For example it is 
possible to formulate algorithms in order to treat  the unilateral contact problem 
with nonmonotone friction or the debonding problem and so on. The complexity 
of the algorithms increases together with the number of the introduced nonlineari- 
ties. For a complete description of the developed algorithms and their applications 
the reader is referred to [39]. 

In general, using the iterative scheme (26), the following basic algorithm can 
be formulated. 

1. Select the appropriate convex functionals w ', J~v, J~ to approximate locally 
the given nonconvex problem. Select initial values for u. 

2. Set k = l  

3. Solve the arising convex problem (26). This gives as a solution u(k). 

4. If the solution u (k) equals to the solution u (k-l) within some predefined accu- 
racy, terminate the algorithm. 

5. Update the convex functionals with the new values for u, set k = k + 1 and 
go to step 3. 

The convex superpotentials w ~, J~v, J~ that  approximate the nonconvex super- 
potentials can be selected in such a way that  the computational effort will be 
minimum. But this task depends on the particular nonmonotone functions to be 
approximated. For this reason we prefer to approximate the nonconvex functions 
with simple convex ones. This task is much easier to be programmed and it can 
be done in a quite general way to include any kind of nonmonotone functions. 

All the algorithms yielded from the basic algorithm presented here, proved to 
be very efficient. Indeed, the fact that  at every step we solve a convex minimization 
problem gives us the ability to treat  large scale problems taking advantage of the 
robustness, the speed and the high convergence rate of the convex minimization 
algorithms. 
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5 A n  a p p r o a c h  b a s e d  on  t h e  i r r e v e r s i b i l i t y  o f  s o f t e n i n g  

In this section we shall present a numerical method, mainly developed by the 
first author, that  uses the fact of the irreversibility of softening as a basis for some 
numerical methods. It is quite straightforward even to those lacking an engineering 
background, that  structural damage is irreversible i.e. no healing of cracked parts 
of an elastic body might spontaneously happen. Softening behaviour may be an 
abstract way of describing what is called "structural  degradation" or "damage" 
i.e. phenomena that  happen in the microscale of the structure. Nevertheless the 
essential trait  of irreversibility of degradation is retained. Our main problem is 
still the computation of one (or possibly a set of) solutions for the inclusion (7). It 
may be noted that  II does not only depend on u but  on the load p as well, acting 
as a parameter.  

Let us consider the discrete case and assume the superpotential II to be Lipschitz 
continuous. Following a known methodology of convex analysis, (see [40, 41]) we 
express the non-convex, non-smooth potential H of the energy absorbed by the 
mechanical system, as the difference of two convex potentials ~ and ~ : 

n ( u )  = r  - r  , u = (27)  

Here one can see that,  as both �9 and ~ are convex, the second function acts in 
a way that  causes energy to be taken out of the elastic system. What  happens 
to the part  of energy dissipated in this way needs not concern us; in general it 
is converted to heat, acoustic emission and is lost in the environment without (in 
the context, of course, of the present paper) causing any further, i.e. thermal or 
other, effects to the mechanical system. Taking note of the previous remark about 
irreversibility, one can deduce that  there has to exist at least one more parameter  
in this function. 

r = r  , = ( 2 s )  

where m is the number of degrees of freedom where a softening mechanical law is 
assumed to exist. We will further refer to �9 as the free energy potential and to 
as the irreversible dissipation potential. 
An important  trait  of ~, is that  

I~I~(ul) -- ~ (U2)  I ~--- 0 for  U l ,  u 2 e ~ m_ {u  / .fi'(~i) < -~(/~j) j C o~i} (29) 

a being an appropriate index set. The meaning of this, is that  we assert that  
I~1 always remains constant inside a region 27, wherein a certain measure of the 
displacements Ilull$-(u,~) remains negative; Ir strictly increases outside I .  
A natural  and simple choice for A is to consider the maximum value of the primary 
variable (displacement) a certain point has undergone : 



NUMERICAL TREATMENT OF NONCONVEX ENERGY PROBLEMS 441 

hi = max(ult~)), u~ #) ---- ui(p (t~)) (30) 
# 

where p(~) are loading states that  out mechanical system was forced to undergo. 
Other choices for A are associated to various mechanical theories (see e.g. [42]). 
For the present form, one can have in mind the simple fracturing solid of Dugill 
introduced as a displacement relation in the boundary of the mechanical system. 
The definition of (30), brings forth the difference in nature of the sense of a "load" 
in the case of the presence of an irreversible dissipation potential. In the classical 
sense a "load" is a point in the dual space of the primary variable (i.e. the displace- 
ment u) and usually appears in the right hand side of the equilibrium equations 
constituting the sole cause for any effects on our system. 

In the case of presence of irreversible dissipation, all points of the set 

: { ( p ? Z n , p ? a X )  X ... X (pmZn,pmaX)}  (31) 

have to be considered, as all of them represent possible actions excercized on our 
mechanical system at an arbitrary sequence. By specifying just  a load vector p, an 
engineer makes the tacit assumption that  all pmin are null. 
Looking a bit further into the nature of the parameter  A, we can see that  the 
greater A is, the less costy it is, in energy terms, to bring the mechanical system 
to the same status of displacement fi : 

Let ~(i) be equal to A(2) except for a certain, say the l-th component : AI 2) > AI 1). 
Then, as H(A (1)) > H(~(2)), we have that  

J~(A(1))I < J~(A(2))I for A (1) < A (2) (32) 

It is therefore clear that ,  in view of (27), it is possible, in the context of an iterative 
procedure, to write a reaction - displacement relation of the form si E O~(uj),j E 
ai where a~ is an index set (like e.g. in (2), in the new form 

5~ j)  : S(uj,~ (j))~ where A/(J) = max A~k) , j E ai (33) 
k=l,. . . , j  

i.e. A~ j) is our j - t h  estimate for the ultimate value of A/. 
Denoting by K and A the Hessians of �9 and ~, we can therefore propose a basic 
iterative scheme that  is made up of the following steps : 

I t e r a t i v e  s c h e m e  1 

1. set initial values : A(0), A(0) = A(A(0)) ; set iteration counter i = 0 

2. i = i + 1 ; compute u(0 = a r g { K -  A(i-1)}u = p 

3. update A(~-l)'s according to relation (30) 
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4. if 3 k / A(k i-1) < A(: ), update A(i-1) and goto step 2; 
else postprocess and stop 

Note that  step 2 is presented as linear. Should this not be the case, it is straight- 
forward that  we would have to iterate over K(u )  keeping A(i-1) constant.  
Having computed a solution of our system does not indeed settles things: to put  
the problem in mechanical terms, one has to eliminate the possibility that  allevi- 
ation of an action pj on the system might cause an increase on the measure of (I) 
according to (32). In fact, we set forth the following 

C r i t e r i o n  1 For a solution obtained by iterative scheme i to be immune to any 
future load paths (trajectories of the load point inside the set P,  the relation 

o;  /Opj < 0 (34) 

must hold for all load components and all softening parameters ~. 
The necessity therefore arises for us to compute a se t /4  in the space of A so that  

U t , " l  ,"1 J •  "'" • ,-'m , - m  , m a x u i ( p ) ,  A ? f  m i n u i ( p ) }  (35) 
pET" pET' 

i.e. the Cartesian product  of the intervals between the maximum and the minimum 
values any component of A is ever going to assume. The idea beh ind /4  is that  
although it is not possible to reach some of its point with one element of P ,  it 
may be possible to reach it with a certain succession of applications of loads (in 
terms of mechanics a "load path").  This is a consequence of the irreversibility of 
structural degradation each single application of a load may cause. 

Given the iterative scheme 1 the computation of the set /4 is, although tedious, 
rather straightforward. 

I t e r a t i v e  s c h e m e  2 

1. i = 0; run scheme 1 and compute ~(0); 

2. i = i + l ;  
using the current estimate of A(i-1) form M (/) = K - A (i-l) and compute the 
inverse M -1 = N 

3. For j = 1, ..., m do : 
compute the max and the min values p may cause to uj: 

-(+) (NjkPk)pos u (-) -- uj = NjkPk ---- (NjkPk)pos + (NjkPk)nr i.e. uj = , J -- 

(Njkpk)neg SO that  we can have ~ f , ( i )  = min(~?f,(i-1),  u~.-))and ~;~p,(i) = 
m~-/~sup,(i-1) o (+)~ 

4. 2 

else stop 
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Fig. 5, F in i te  e lement  discret izat ion of t he  s t ruc tu re .  

This scheme along with (35) can supply an estimate for the set L/therefore allowing 
for a "worst case" computation of our mechanical system based on the simple idea 
of the irreversibility of structural degradation. 

6 Discussion and  numer ica l  example  

The methods described in the previous Sections have been applied to the analy- 
sis of a simple structure. A linearity assumption is made for the material and a 
two-dimensional constant stress model was employed instead of a more realistic 
nonlinear material law and a three-dimensional representation, with the purpose 
of pronouncing the effects of interface's nonmonotone behaviour. 

The simple structure of Fig. 5 is examined. The structure data are shown in the 
figure. On the interface unilateral contact conditions are assumed for the normal 
to the interface direction(Fig. 6a) . For the tangential direction, the nonmonotone 
law of Fig. 6b is assumed to hold. The.various load cases for which the structure 
was analysed are given in Fig. 6c. 

The results obtained by the three methods differ slightly. The main reason of 
these differences is that the three algorithms use different finite element schemes to 
solve the problem. The first and the third use the displacement's method whereas 
the second uses a combination of the displacement's and of the force method. 
Another factor affecting the results is the kind of the finite elements which are used 
for the solution of the problem. The first method uses quadrilateral elements to 
discretize the structure, whereas the second and the third use triangular elements. 
Taking the above into account, the results of the three methods are found to be 
in good accordance. Indeed, the differences between the results given by the three 
methods at every calculated point, are less than 2 percent. For this reason, here 
we present only the results obtained by the second method. 

Fig. 7a (resp. Fig. 7b) gives the distribution of the contact (resp. the frictional) 
forces along the interface. We observe that the values of the contact forces increase 
linearly with respect to the loading (the curves (a) . . .  (h) are almost parallel). 
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The adopted  interface laws and  the  analysed load cases. 

This is not the case with the frictional forces where the effect of the nonlinearity 
introduced by the nonmonotone diagram of Fig. 6b is obvious. 

In curves (a) and (b) and for some nodes (3,17), the solution lies on branch 
CA of the nonmonotone diagram. This is easily verified from Fig. 8 that  gives the 
values of the relative tangential displacements along the interface. The increase of 
the load (load case (c)) has as a result the realization of the softening part of the 
diagram in all the nodes of the interface and a sudden reduction of the values of 
the frictional forces. Further increase of the load (load cases (d) . . .  (g)) has as a 



NUMERICAL TREATMENT OF NONCONVEX ENERGY PROBLEMS 445 

450 

400 

350 
.--., 50O 

250 
-~ 2DO 

15o 

Q 

b -~- 

d 
(el //~ 
(0 - - ~  / / / ~  
<~l - - - -  III1~ 

100- 

500 -_~ 
2 

(a) . ~  

Interface nodes 

b) 

20 

10 ~ (' 

O, 

- i 0  

-20 ~ . . . . . . . .  

Interface :lodes 
14 I'6 18 

Fig. 7. Distribution of the con~&ct ~nd frictionM forces Mong the interface. 



446 E.K. KOLTSAKIS ET AL. 

0.04 
0.035 
0.03 

~ 0.025 

.~ 0.02 

~ 0.015 

0.oi 
0.005 

P~ 

0 

-0.005 

(h) 

(c) 

(b) 
(.) 

2 4 6 8 I0 12 14 16 18 
Interface nodes 

I ( , )  * 

'I (b) , 
, (g) ~ 

(h) , 

Fig. 8. Relative tangential displacements along the interface. 

result the realization of branch BC in almost all the nodes of the interface and 
consequently, the frictional forces increase almost linearly with respect to the load. 

7 C o n c l u s i o n s  

A family of numerical method for the t reatment  of hemivariational inequalities has 
been presented. All the methods approximate the corresponding nonconvex energy 
problem with convex subproblems. The advantages of this approach are obvious 
as these methods can be applied for the solution of a wide range of hemivariation- 
al inequalities. The more or less heuristic character of these methods should be 
takeninto account as well as their excellent numerical performance for large scale 
engineering problems. A full mathematical  discussion is still needed. 
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